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I. MOTIVATION

The three basic elements of circuits are the resistor,
capacitor, and inductor. These are two-terminal devices, of
which the state can be captured by voltage v, the measure
or electrical potential across the terminals, and current i, the
measure of the flow of electricity through the component.

From first principles, one can derive the constitutive laws
for a resistor (1), capacitor (2), and inductor (3) with resis-
tance R, capacitance C, and inductance L, respectively [1].

v = Ri (1)
dv

dt
=

1

C
i (2)

v = L
di

dt
(3)

One strength of circuit analysis is the high degree of
linearity that these basic components exhibit when mea-
sured experimentally, accurately capturing almost all current-
voltage dynamics. As such, analog electronics engineers have
been able to design circuits for signal processing, power
generation, radio transmission, closed-loop feedback with
remarkable model-to-real transfer. In all of these domains,
it is natural to use frequency-domain analysis (specifically
through the Laplace transform)–the linear components have
very predictable input/output gain and phase shift dynamics
with respect to sinusoids.

As such, in the design of circuits and development of
electrical components, one powerful experimental tool is
sinusoidal steady-state analysis, in which constant amplitude
sine waves are input into a component or system, and the gain
and phase shift are calculated. To achieve this, a means of
generating low-distortion sinusoids that is resistant to loading
(i.e. the sine wave being changed by the components that use
it as an input) is important.

While sinusoids can come out of linear systems, generating
stable, deterministic sinusoids requires nonlinear dynamics.
In this project, we will investigate these nonlinearities in one
of the original high-quality sine wave generators: the Wein
bridge oscillator.

II. LINEAR CIRCUIT

A. Linear Analysis

The Wein bridge oscillator circuit is shown below in Fig.
1 [2]. The oscillator circuit relies on two main principles to
create and sustain oscillations.

Fig. 1: The Wein bridge oscillator circuit schematic.

The first part is the Wein bridge circuit, highlighted in
red. To analyze the circuit, we use the method of complex
impedances, with constitutive laws described in (4) and (5)
[3].

v = Ri ⇔ V (s) = RI(s) =⇒ ZR = R (4)
dv

dt
=

1

C
i ⇔ V (s) =

1

sC
I(s) =⇒ ZC =

1

sC
(5)

Using this transform and the principle of voltage dividers
[4], we can calculate the s-domain transfer function that
represents the how an input signal (in this case, vo) is
transformed to an output signal (in this case, v+) by a system



(in this case, the Wein bridge).

V+

Vo
(s) =

1

1/R2 + 1/ 1
sC2

R1 +
1

sC1
+

1

1/R2 + 1/ 1
sC2

=
sR2C1

s2R1C1R2C2 + s(R1C1 +R2C2 +R2C1) + 1

=
sτ21

s2τ1τ2 + s(τ1 + τ2 + τ21) + 1
(6)

The triangular component in the middle is known as an
operational amplifier (op-amp), which is an active circuit
component that outputs a voltage proportional to the differ-
ence of the input voltage, as per (7).

vo = A(v+ − v−) ⇔ Vo(s) = A(V+(s)− V−(s)) (7)

Unlike passive (capacitors and inductors) and dissipative
(resistors) components, op-amps are able to input energy
into a system. When an op-amp is connected in a negative
feedback configuration, we get:

V−

Vo
(s) =

R4

R3 +R4
=

1

G
(8)

We now combine the Wein bridge (6), feedback (8),
and op-amp (7) dynamics to determine the overall system
dynamics, and transform back into the time domain.

Vo = A(V+ − V−)

0 = Vo

(
s2τ1τ2 + s

(
τ1 + τ2 + τ21 −

GA

G+A
τ21

)
+ 1

)
= τ1τ2v̈o +

(
τ1 + τ2 + τ21 −

GA

G+A
τ21

)
v̇o + vo. (9)

As we can see, the overall circuit behaves as a damped
harmonic oscillator, which takes normalized form

0 =
1

ω2
n

ẍ+
2ζ

ωn
ẋ+ x.

It oscillates with damped frequency ωd = ωn

√
ζ2 − 1 and

has amplitude that exponentially decays according to e−ωnζt.
When constructing this circuit, we will use a 741 op-amp,
which has open-loop gain A = 200000.

To make our system oscillate at a constant amplitude, we
must make ζ = 0 =⇒

0 = τ1 + τ2 + τ21 −
G∗A

G∗ +A
τ21

= τ1 + τ2 + τ21 −G∗τ21 for A ≫ G∗

=⇒ G∗ =
τ1 + τ2
τ21

+ 1 (10)

One straightforward way to achieve this is to match τ1, τ2,
and τ21, which would then require G∗ = 3 =⇒ R3 = 2R4.

B. Experimental Validation

Given this seemingly simple linear solution, we construct
the circuit. Since the circuit is fully linear, the oscillation
amplitude is a function of the initial conditions–we’ll trust
electrical noise to allow for some oscillations, and focus on
the oscillator’s frequency. The constructed circuit shown in
Fig. 2 uses the nominal component values shown in Table I.

Fig. 2: Constructed Wein bridge oscillator circuit.

TABLE I: Nominal component values in circuit A1.

component value
R1 47 kΩ
C1 68 nF
R2 47 kΩ
C2 68 nF
R3 20 kΩ
R4 10 kΩ

These components should produce oscillations of fre-
quency 49.8Hz. Using an oscilloscope, we measure the
voltage vo. As we can see in Fig. 3, the frequency is
approximately correct, but the amplitude is increasing.

Fig. 3: Recorded experimental data for circuit A1. We mea-
sure oscillation frequency 3

.0781−.0195 = 51.2Hz.



When we use a digital multimeter to measure the actual
component values, we see deviations in the actual value of
each component. Table II shows these measurements.

TABLE II: Nominal versus measured component values in
circuit A1.

component nominal value measured value
R1 47 kΩ 46.54 kΩ
C1 68 nF 68.12 nF
R2 47 kΩ 46.14 kΩ
C2 68 nF 65.93 nF
R3 20 kΩ 19.69 kΩ
R4 10 kΩ 9.875 kΩ

With these actual values, we get damping ratio ζ =
ωn

2
(τ1 + τ2 + τ21 − Gτ21) = −0.009, which, while small,

generates exponential growth. Plotting the model alongside
the experimental data in Fig 4 shows excellent alignment.

Fig. 4: Experimental, recorded data for circuit A1 compared
with the linear model using measured component values.

This experimental result reveals a massive caveat with the
linear circuit construction. For marginal stability (the type
that generates oscillations), the component values must be
exactly matched to each other to cancel out oscillations. In
practice, commodity resistors and capacitors are not nearly
precise enough to guarantee this.

Finally, to further validate the accuracy of our purely linear
model, we reduce G by making R3 = 14.77kΩ (15kΩ
nominal) and R4 = 8.081kΩ (8kΩ nominal), yielding a
ζ = .075. The experimental results are shown in comparison
to the model in Fig. 5.

III. ”UNINTENTIONAL” NONLINEARITIES

Obviously, in a physical system, exponential growth cannot
occur forever. We expect the system’s growth to somehow be
limited. A purely linear system can only have one fixed point,
which, for this system, is at the origin. Thus, any limitation
that bounds growth must be a nonlinearity.

Fig. 5: Experimental, recorded data for circuit A3 (A1 with
lesser G) compared with the linear model using measured
component values.

A. Saturation

In the case of an op-amp, this nonlinearity is saturation.
The op-amp is only capable of outputting the voltage that
is within the bounds of its supply voltage, after which it
saturates [5], as shown in Fig 6.

Fig. 6: Saturation behavior of an op-amp [5].

From our canonical linear system dynamics in 9, we can
decompose into the 2D system in (11) with state vector v⃗ =
[vo v̇o]

T


v̇o = v̇o

v̈o = − (τ1 + τ2 + τ21 −Gτ21)v̇o + vo
τ1τ2

(11)

To include the saturation behavior in our model, we impose a
”filter” on v̇o. During saturation, the op-amp output voltage is
only permitted to become lesser in magnitude. Additionally,
if (via some initial conditions) the op-amp output voltage is
pulled beyond its saturation voltage, the internal dynamics
will cause the voltage to rapidly decay towards saturation
voltage. One caveat with this model is that the system state
is bounded–if the output voltage is pulled too far beyond
saturation, the silicon of the op-amp will permanently break



down and fry the part. Assuming we do not operate in that
regime, we develop the filter (12)

s(x) = x (1− σ(−(x−Xl))σ(−x)− σ(x−Xu)σ(x))

+ 500 ((Xl − x)σ(−(x−Xl)) + (Xu − x)σ(x−Xu))
(12)

where:

σ(x) = smooth step function 1
1+e−100x

Xl = lower saturation bound
Xu = upper saturation bound

We apply this filter to give us new, nonlinear system
dynamics (13).

v̇o = s(v̇o)

v̈o = − (τ1 + τ2 + τ21 −Gτ21)v̇o + vo
τ1τ2

(13)

To analyze this system, we perform a similar parametriza-
tion as the linear analysis, using the gain G = R3

R4
+ 1 as

our parameter. It is still true that the critical parameter value
G∗ = 1+

τ1 + τ2
τ21

makes the system linearly marginally sta-

ble, i.e. generates infinitely many closed orbits. For G < G∗,
the fixed point at the origin is stable. Finally, for G > G∗
case, the system exhibits behavior that only exists due to the
saturation nonlinearity–tending to a limit cycle defined by the
saturation bounds. Thus, we can see that with respect to op-
amp feedback gain G, this 2D system exhibits a degenerate
Hopf bifurcation, which is shown in the phase plots in Fig
7.

B. Experimental Validation

We construct a third version of circuit A, using the compo-
nent values listed in Table III. This circuit has G∗ = 2.9765
and G = 3.1792, putting it in the stable limit cycle regime.

TABLE III: Nominal versus measured component values in
circuit A3.

component nominal value measured value
R1 47 kΩ 46.54 kΩ
C1 68 nF 68.12 nF
R2 47 kΩ 46.14 kΩ
C2 68 nF 65.93 nF
R3 22 kΩ 21.52 kΩ
R4 10 kΩ 9.875 kΩ

We can see from the experimental, time-series data in Fig 8
that the system obeys the linear, exponential growth initially,
but then crashes into the predicted saturation bounds. The
phase portrait in Fig 9 shows that the model accurately pre-
dicts the approach to the limit cycle. To obtain the derivative
of output voltage, we use a filtered, discrete differentiation
scheme. Unfortunately, the low digital resolution of the scope
makes the raw, differentiated signal appear heavily quantized,
necessitating heavy filtering. This results in softened corners,
since the transitions between not-saturated and saturated are
rather sharp.

To effectively evaluate the accuracy of our model with
respect to the limit cycle, we use the time averaging function-
ality of the scope, which averages multiple cycles of periodic
waveforms taken over time. This is a common method of
increasing resolution of oscilliscope readings, since so long
as the underlying signal is truly periodic, the noise is removed
without adding the artifacts of low-pass filtering a single
cycle. This average data is showed in Fig 10 demonstrates
remarkably accurate modelling.

IV. NONLINEAR FEEDBACK

However, the goal with an oscillator circuit is often to
generate sinusoids with minimal distortion and deterministic
amplitude–using the saturation of the op-amp to limit the
amplitude is not good practice. To generate a stable, isolated
periodic orbit, we need to introduce a nonlinearity in our
circuit dynamics.

One natural place to introduce this nonlinearity is in the
feedback gain G. In the linear circuit, it is constant, but
to make a stable limit cycle, we would want to make it a
function of the output voltage. Intuitively, we would want
to increase the gain G when the amplitude is too low and
decrease G when the amplitude is too high, thus stabilizing
the amplitude of oscillations.

A. Incandescent Light Bulbs
Historically, the first nonlinear feedback mechanism used

to stabilize the Wein bridge oscillator is a light bulb [6].
A lightbulb can be modelled as a temperature dependent
resistor, which follows the constitutive law [7]

R(T ) = R0(1 + α(T − T0)) (14)

where:
T = temperature (K)
α = temperature coefficient of resistance (Ω/K)
T0 = room temperature (measured to be 295K)
R0 = resistance (Ω) measured at room temperature
Additionally, we model the energy transfer using the First

Law of Thermodynamics [8]:

mcṪ =
v2R

R(T )
−Q(T ). (15)

where:
m = mass of filament (kg)
c = specific heat of filament (J/kgK)
vR = voltage (V) across resistor
Q = heat emitted by bulb (W)
Since the lightbulb gets white-hot, we can assume the heat

emitted by the bulb is largely due to radiation, which follows
the law [8]:

Q(T ) = ϵσAs(T
4 − T 4

0 ). (16)

where:
ϵ = thermal emissivity coefficient
σ = Steffan-Boltzmann constant (W/m2K4)
As = surface area of filament (m2)



(a) G < G∗ (b) G = G∗ (c) G > G∗

Fig. 7: Phase portraits for different values of G.

Fig. 8: Time-series, recorded experimental data for circuit
A3, compared with model integrated using MATLAB’s built-
in stiff system solver.

B. Lightbulb-driven Nonlinear Feedback

If we replace R4 in the oscillator circuit with the lightbulb,
which has resistance R(T ), we get that

vr = v− =
R(T )

R3 +R(T )
vo (17)

G(T ) = 1 +
R3

R(T )
. (18)

Altogether, we get the new dynamic equations of this
system for system state x⃗ = [vo v̇o T ]T :

v̇o = v̇o

v̈o = − (τ1 + τ2 + τ21 −G(T )τ21)v̇o + vo
τ1τ2

Ṫ =
1

mc

(
R(T )

(R3 +R(T ))2
v2o −Q(T )

)
.

(19)

While we could analyze and simulate the full system,
one important detail is that we do not actually care about
the entirety of the system state. Particularly, we have not
perturbed the voltage oscillator dynamics except for with
temperature-dependent gain. Thus, we still expect damped

Fig. 9: Phase-plane, recorded experimental trajectory for cir-
cuit A3, compared with model integrated using MATLAB’s
built-in stiff system solver.

harmonic oscillations–so, we can transform from voltage and
voltage derivative vo, v̇o to voltage amplitude and phase A, ϕ
space by

vo = Ae−ωnζt sin(ωdt+ ϕ(t)).

Additionally, for the purposes of power dissipation, we can

use root-mean-squared voltage < vo >=
1√
2
A. Using this

transformation, we can get reduced system dynamics:
Ȧ = −ζ(T )ωnA

Ṫ =
1

mc

(
R(T )

(R3 +R(T ))2
A2

2
−Q(T )

) (20)

where, as with our linear system dynamics:

ωn =
1

√
τ1τ2

; ζ(T ) =
ωn

2
(τ1 + τ2 + (1−G(T ))τ21),

and the actual voltage signal to be a sine wave with damped
frequency ωd = ωn

√
1− ζ2.

We see one trivial fixed point at A0 = 0 and T0. Additional
fixed points, unfortunately, cannot be computed analyticallys.



Fig. 10: Phase-plane, recorded experimental trajectory for
circuit A3, collected using oscilloscope averaging, and com-
pared with model integrated using MATLAB’s built-in stiff
system solver.

We will later turn to numerical solvers to calculate fixed
points.

We use MATLAB symbolic solver to differentiate and
obtain the Jacobian:

first column:[
−ω2

n(τ1 + τ2 − R3τ21
R0(α(T−T0)+1) )/2

AR0(α(T−T0)+1)
mc(R3+R0(α(T−T0)+1))2

]
second column: − AR3ατ21ω

2
n

2R0(α(T−T0)+1)2(
− (4T 3

s −(A2R0α)
(2(R3+R0(α(T−T0)+1))2) +

(A2R2
0α(α(T−T0)+1))

(R3+R0(α(T−T0)+1))3

)
1
mc


C. Lightbulb Coefficient Determination

The exact constants in the light bulb’s model
(R0, α, ϵ,m, c, As) are constrained to the values that
commercially available lightbulbs have–I purchased a
random lightbulb from Amazon that operated in our
voltage range. Using a multimeter, we can easily determine
R0 = 1.35Ω. To experimentally determine some of these
coefficients, we can turn to steady-state analysis. If we
pass in a constant voltage, the temperature will eventually
equilibrate (Ṫ = 0). Experimentally, this happens remarkably
quickly, indicating that mc is relatively small.

Thus, upon gathering vR−R data at a range of steady-stave
voltages, we can fit α, and ϵAs, since only these parameters
are present in Ṫ = 0. Fig 11 shows the experimentally
measured steady-state data and the fit, which has R2 > 99%.
The fit gives α = .0132 and ϵAs = 1.692 · 10−4.

D. Fixed Point/Linear Stability/Bifurcation Analysis

In constructing this circuit, we will use the same values
of R1, R2, C1, C2. However, we will instead use an OPA548
op-amp, which supports higher saturation voltage (30V) and

Fig. 11: Steady-state resistance measured at various applied
voltages for the lightbulb.

more output current (which is neccessary to power a light
bulb).

We still have one undetermined coefficients: mc, which
represents the thermal mass of the lightbulb’s filament. The
larger mc, the more time it takes for the filament to heat
up, and the slower the resistance changes. Upon varying mc,
as seen in Fig 12, the fixed points’ locations do not appear
to be changed. Instead, it ”reduces” the stability by invoking
more orbiting the stable fixed point, but always appears to be
stable. This makes sense–mc simply scales the temperature
dynamic equation. We wouldn’t expect it to make the system
go unstable for any reasonable magnitude of mc (lightbulb
filaments have, by design, very small thermal masses).

We now turn to the actual tunable parameter: R3. As can be
seen in Fig 13, R3 decides the location of the fixed point with
nonzero-amplitude. Intuitively, this makes sense: similarly to
the linear circuit, there is a ”critical” value of G(T ) = G∗
value in which the system reaches steady state. Changing
R3 changes the steady-state R(T ) needed to achieve this
critical gain, which in turn changes the steady state sine wave
amplitude that creates the temperature that gives the correct
R(T ).

Using the Jacobian calculated earlier, we actually find a
linear stability analysis yield an eigenvalue that is zero for all
of the apparently stable equilibrium points. From the phase
portraits, we can see that the system always has a stable
equilibrium and no limit cycles.

Additionally, as seen in the bifurcation diagram in Fig
14, there is a critical R3,c = 2.65Ω; at lesser R3, the non-
zero stable equilibrium goes out of existence and the zero
equilibrium becomes stable. Physically, this represents R0

being too high to allow the system to oscillate at all, i.e.
G(T0) < Gc.

E. Hardware Validation

To stay within physical limitations, we choose R3 =
20.05Ω (20Ω nominal), which gives us a predicted amplitude



(a) mc = 10−6 (b) mc = 10−5 (c) mc = 10−4

Fig. 12: Phase portraits for different values of mc.

(a) R3 = 2Ω (b) R3 = 5Ω

(c) R3 = 15Ω (d) R3 = 30Ω

Fig. 13: Phase portraits for different values of R3. Stable fixed point shown as red x, unstable shown as red circle.

A = 25.88V . The constructed version of this circuit is shown
in Fig 15.

The time series data is shown in Fig 16, again col-
lected using scope averaging. As we can see, our frequency

measurement is still incredibly precise, and our amplitude
estimate is quite accurate.



Fig. 14: Bifurcation diagram representing the A component
of fixed points vs. R3.

Fig. 15: Constructed version of the Wein bridge oscillator
with lightbulb-driven nonlinear feedback.

V. CONCLUSION

The Wein bridge oscillator is one of the first oscillator
circuits that was capable of generating low-distortion sinu-
soids of tunable amplitude. While sinusoids are a core part of
linear systems analysis, we know that generating an isolated
orbit requires a nonlinearity. In this report, we explored
how both the unintentional nonlinearity of op-amp saturation
and intentional nonlinearity that comes from temperature-
dependent resistance in the feedback path can lead towards
stable, sinusoidal oscillations.

Future research could explore using diodes as a (signifi-
cantly more nonlinear) mechanism of nonlinear feedback for
the Wein bridge oscillators. Diodes produce distortions that
can be characterized with careful modelling. Additionally,
there are other op-amp oscillator types; for example: phase
shift oscillators, quadrature oscillators, Bubba oscillators [2].
These all use different linear circuit structures and nonlin-
earities that enable fixed oscillations, each having their own
interesting set of over nonlinear dynamics and qualitative
behavior.

Fig. 16: Averaged time-series data taken on the Wein bridge
oscillator circuit using lightbulb-driven nonlinear feedback.
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