
Trajectory Optimization and Value Iteration for an
Egg-Flipping Spatula Controller

Ronak Roy
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

ronakroy@mit.edu

Abstract—Using a spatula to flip a cracked, partially-cooked
egg is a crucial part of making over-easy fried eggs. Since the
egg’s motion is ruled solely by the contact dynamics, which levies
limitations on the forces applied to the egg, this is a prime
underactuated system to attempt to control using trajectory
optimization and an optimal controller derived using value iter-
ation. The contact dynamics were modelled implicitly, allowing
constraints to be added to the trajectory optimization problem
that model the equations of motion and the restrictions on the
magnitudes and directions of the normal and frictional forces.
For the value iteration, a highly simplified model was constructed
that allowed contact forces to be determined explicitly, encoding
the contact constraints instead in the value iteration’s cost
function. The trajectory optimization was mostly successful, but
high sensitivity to initial guess led to incomplete optimization
results. Passing the spatula trajectory into a partial-feedback
PID controller demonstrated that the modelled dynamics were
sufficiently accurate, and full-state feedback and stabilization
through a method like a Finite-Horizon LQR controller could
improve the performance. The value iteration approach was
unsuccessful, due to the immense size of the search space.
Developing an optimal controller could be more successfully if
done with a neural fitted approach, which would reduce the size
of the space considerably.

Index Terms—underactuated robotics, contact dynamics, im-
plicit dynamics, trajectory optimization, value iteration

I. CODE

The IPython notebook for this work can be found at
https://github.com/RonakRoy/EggFlipper.

II. INTRODUCTION AND RELATED WORK

Of the many ways to cook an egg, the method of making
over-easy fried eggs is one that is beloved by many, but
somewhat physically challenging. To make an over-easy fried
egg, the egg is cracked onto a greased pan, allowed to cook
for a few minutes, and then flipped such that the top of the
egg may cook for a few seconds. This methodology ensures
that the layer of egg white on top of the egg can cook fully,
which would otherwise take a much longer amount of time
and result in the egg yolk being cooked mostly though. One
of the goals of the over-easy egg, though, is to have a runny
yolk.

Having a robot perform the flipping operation raises an
interesting challenge. A robot, or a human, for that matter, has
full control over the spatula. However, the motion of the egg is
governed only through the contact forces present between the

egg and the spatula–given that the egg is not welded to the
spatula, the system here is indeed underactuated, as certain
accelerations of the egg are unachievable from any given
state. One example is the inability for an egg with the yolk
facing upwards to accelerate downwards with a magnitude
greater than that of gravity–at best, the egg can only fall.
Another more relevant, example of the underactuated nature
of the system is how a configuration with the egg and spatula
oriented vertically is not capable of being driven with an
acceleration that is strictly upward. To generate an unpward
frictional force on the egg, the spatula must also generate a
positive normal force by ”pushing” the egg sideways as it
travels upward.

Thus, the goal of this work is to develop a controller that,
given full wrench control of a spatula, is capable of taking
an egg from resting on top of a spatula on top of a pan
to upside down on the pan. The success of the controller
is evaluated based on the angle of the egg, as well as its
proximity to the origin, when its height above the pan becomes
zero. To do this, two control strategies were attempted. The
first is a trajectory optimization, which carries the benefit of
allowing the contact dynamics to be modelled implicitly. The
results of the trajectory optimization were used to develop a
highly simplified model to use to attempt to obtain an optimal
controller. This controller used a value iteration approach,
in which the contact dynamics were enforced using the cost
function.

This research project is an application of the controls
techniques of trajectory optimization and value iteration, but
incorporates the additional challenge of contact dynamics.
This work was inspired by Dawson’s work on trajectory
optimization for pancake flipping [1]. However, this work puts
special emphasis onto restricting the dynamics of the trajectory
to account for the soft-body nature of an egg. As such, special
care was taken to ensure that, over the course of the motion,
the egg would never enter a regime in which it is expected
to flex. The author is not aware of other work that offers this
treatment to task involving contact dynamics.

III. APPROACH

A. System Dynamics with Implicit Contact

We begin by developing a model of the real-world system.
In this model, we consider the motion existing in the vertical

https://github.com/RonakRoy/EggFlipper


XZ plane, as shown in Fig. 1, because the egg and spatula are
symmetric about said XZ plane, and intuition suggests that
the only control input that is provided by a human flipping an
egg, and thus would be provided by a robot flipping an egg, is
vertical force, horizontal force, and torque. We also consider
the egg and spatula rigid bodies, for the sake of modelling, and
thus give them a time-invariant mass and moment of inertia
about the y-axis, as shown in Fig. 2.

Fig. 1: Planar coordinate
system, with origins affixed
to the top center of the spat-
ula and bottom center of the
egg.

Fig. 2: Contributions to
the manipulator equations:
masses, moments of inertia,
gravity, and control input.

Given this multibody model, we can use the Newton-
Euler method to determine the standard coefficient matrices
for the the manipulator equations, with generalized positions
q⃗ = [xs zs θs xe ze θe]

T and control inputs u⃗ = [ux uz uθ]
T ,

inertial matrix M, Coriolis matrix C, gravity vector τ⃗g , and
control input matrix B.

M(q⃗)¨⃗q +C(q⃗, ˙⃗q) ˙⃗q = τ⃗g(q⃗) +Bu⃗ (1)
for

M =


ms 0 0 0 0 0
0 ms 0 0 0 0
0 0 Is 0 0 0
0 0 0 me 0 0
0 0 0 0 me 0
0 0 0 0 0 Ie


C = 0

τ⃗g =
[
0 −msg 0 0 −meg 0

]T

B =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


However, the contact dynamics require an additional term

in the manipulator equations. Generally, a multibody system
with contact can be modelled by considering contact at a finite
number of points at which two bodies meet. To algebraically
formulate the contact dynamics in a 3D multibody problem,
one must define a the normal vector and two tangential vectors
[2]. However, in the planar case, the forces involved with con-
tact dynamics only act in the normal direction, i.e. the normal
force, and in the tangential direction, i.e. the frictional force.

Since we modelled the system as two interacting rigid bodies
with flat surfaces that come in to contact with each other, we
can abstract the contact interactions as being concentrated on
the two corners of the egg, as shown in Fig. 3.

Fig. 3: The normal and frictional forces between the egg and
the spatula, modelled as being concentrated at the egg corner
points, directed normal to and tangential to the contact surface,
respectively. Note the convention of positive normal force
being towards the egg/into the spatula, and positive frictional
force being to the egg’s left/the spatula’s right.

The forces present in this model introduce into the system
dynamics the sources of the force and moment provided by the
spatula onto the egg. In the real system, friction and normal
force are distributed along the contact surface; however, in our
rigid-body model, this abstraction is accurate, and simplifies
calculations. Accounting for the fact that an egg is not a rigid
body will happen during the constraints and/or costs for each
of the two controller types.

Using the Newton-Euler method to determine the equations
of motion now incorporating the contact force vector yields
the following structure of the manipulator equations, with
contact force vector λ⃗ = [N1 N2 f1 f2]

T . The aforementioned
inertial, Coriolis, gravitational, and input terms remain the
same.

M(q⃗)¨⃗q +C(q⃗, ˙⃗q) ˙⃗q = τ⃗g(q⃗) +Bu⃗+W(q⃗)λ⃗ (2)
for

W =


− sin θs − sin θs − cos θs − cos θs
− cos θs − cos θs − sin θs − sin θs

b1 b2 −hs/2 −hs/2
sin θs sin θs cos θs cos θs
cos θs cos θs − sin θs − sin θs
mN1 mN2 mf1 mf2


For the contact matrix W, we introduce constant hs, the

height of the spatula, and variable terms b1 and b2 which
represent the distance from the center of the spatula to the
contact points, as shown in Fig. 4. The terms in the last row
of W come from the moment balance on the egg, which
can be derived using vector algebra on the geometry of the
system. The complexity comes from the fact that the egg is
not required to be parallel to the pan, but the contact forces
still act according to the pan, as shown in Fig. 5. We also
introduce d, the vertical distance along the height of the egg



upon which its center-of-mass lies, and R(θ), the 3D rotation
matrix about the y-axis.

Fig. 4: Definitions of bi, the
contact point positions.

Fig. 5: Vectors used to cal-
culate the mi terms of W.

Using the aforementioned vector quantities and constants,
we can obtain the mi terms as follows:

mN1 = R(θe)r⃗1n̂

mN2 = R(θe)r⃗2n̂

mf1 = R(θe)r⃗1t̂

mf2 = R(θe)r⃗1t̂

(3)

B. Trajectory Optimization Formulation

Now, with the resultant manipulator equations, we can con-
struct our trajectory optimization problem. We formulate the
problem as a direct transcription trajectory optimization using
the implicit Euler method. As such, we consider breakpoints
0, 1, . . . , T . Thus, our problem’s decision variables are the
following, ∀i ∈ {0, . . . , T − 1} and ∀j ∈ {0, . . . , T}:

• hi. The length of the time interval between breakpoints
i and i+ 1.

• q⃗j , ˙⃗qj , ¨⃗qi. The generalized coordinates and their first and
second derivatives. The coordinates here are the x, z, and
θ position of both the spatula and the egg. The position
and velocity vectors are the state variables at each of the
T + 1 breakpoints, whereas the acceleration is defined
along the T transitions.

• u⃗i. The control inputs, i.e. the forces and torque applied
to the two linear axis and one rotational axis. Like ¨⃗qi, it
is factored into the system as a transition between states.

• f⃗i. The contact forces N1, N2, f1, f2. Again, they are
defined on the intervals between states.

1) Additional Constraints: In addition to adding constraints
to represent the implicit system dynamics, we must also
add a number of constraints to enforce contact requirements.
Right now, the frictional and normal forces are completely
unconstrained, and could be set by the optimizer to any
arbitrary values to enable the trajectory optimization ends up
with the egg upside down, on the pan, as if the egg was glued
to the pan.

Non-penetration Constraint. First and foremost, the egg
cannot be allowed to pass through the spatula. To achieve
this, we define distance function Φ⃗(q) to be the projection of
the corner distance vectors onto the pan normal vector, i.e.
r⃗1/2 · n̂. We constrain this value to be greater-than-or-equal-to
zero, ensuring that the egg stays above or at the surface of the
spatula at all times. Similarly, we specify that ze ≥ 0, so the

optimization finds no trajectories in which the egg attempts to
swing under the pan.

Non-stickiness Constraint. We also levy the constraint that
N1/2 ≥ 0, since the egg should be allowed to fly off of the
spatula. There is no adhesion between the egg and the spatula–
again, our egg is not glued to the spatula.

Friction Cone Constraint. Using the standard model of
friction, the friction force is variable, able to increase as high
as possible in order to keep the two surfaces stationary w.r.t
each other, up until the maximum frictional force magnitude,
which is the coefficient of friction times the normal force. As
such, we constrain the following: f2

1/2 ≤ µ2N2
1/2.

Distance/Normal Force Complementary Constraint. Our
final constraint ensures that the spatula can only influence the
egg’s motion when it is actually in contact. An egg corner
is only in contact with the spatula when the distance Φ1/2 is
zero; normal force can only be experienced at a corner when
it is in contact with the pan. Thus, we levy the constraint
that Φ1/2 · N1/2 = 0. Since both normal force and distance
are previously constrained to be non-negative, this constraint
ensure that one of the two must be zero.

On-spatula Constraint. To prevent the program from as-
suming the spatula is infinitely wide, which would make the
solutions less practically applicable, we add the constraint that
b1/2 lie within the bounds of [−ws/2, ws/2], where ws is the
width of the spatula. We also constrain the distance to be less
that a millimeter. This is to prevent the egg from flying off
of the spatula and re-colliding–requiring an implementation
of impulsive collisions combined with a hybrid-dynamic ap-
proach. We later discuss why considering breaking and making
contact is not necessary, which is why we constrain out the
possibility.

Start and End Constraints. Our last constraint is the one
that actually enables the flipping. Our start constraints are
that, at state 0, all positions and velocities are zero. The end
constraint is on the egg at state T : the angle is π, and the z-
position is the egg’s height, such that the egg is upside, with
the top of the egg touching the surface of the pan.

2) Costs: With the constraints specified, we must also add
some costs to drive the trajectory optimization to a favorable
solution.

Velocity/Input Costs. As ”standard” costs, we add a
quadratic cost for every state that is proportional to the
magnitude of the velocity and the magnitude of the actuation
input.

Normal Force Difference Cost. Due to our egg being
a softbody, we penalize the square of the difference in N1

and N2 at each time step; this is so we prevent situations in
which a very high moment is applied to egg, granted that it
would likely cause the egg to flex, bend, or redistribute mass,
especially if one of the corners was not in contact with the
pan.

Height Cost. As a simply practical concern, we penalize
the height of the egg at each time step. This cost arose
experimentally, as without its presence, trajectories had an
affinity for tossing the egg up a few meters into the air, which



is not something that a real person would do, or a real robot
should do.

Distance-from-origin Cost. Finally, since our pan would
presumably be finitely large, we add a cost to the final x-
position of the egg.

Now, the setup for our trajectory optimization is complete.
All that is left is to set an initial guess and run the optimization
problem. We will return to this in the evaluation and discussion
section.

C. Value Iteration Formulation

Before moving on to evaluating the trajectory optimization,
we first discuss the setup for the optimal control attempt. One
of the major caveats of using value iteration for this problem
is that the dynamics must be solved explicitly. This is chal-
lenging, because an arbitrary multibody system with contact
dynamics has multiple dynamic modes. In our situation, these
modes are full contact with the spatula, one corner contact, and
no contact. The challenge arises in switching between these
modes–impulsive collisions cause discontinuities in system
state. In the case of the egg-flipper, however, we use our
intuition to greatly simplify the problem in a manner that
allows us to explicitly calculate contact forces.

When flipping an egg, one tries to move the spatula as to
maximize the time the egg is on the spatula. Since the egg
is a soft-body, allowing it to leave and then re-collide with
the spatula over the course of the motion is unnecessarily
complicated. Furthermore, we also do not want the egg to
be allowed to ”tip” about one of the corners, because it is
not a rigid body. It would instead start flexing and bending
the moment it stopped having full contact with the pan. Given
these considerations, we formulate our model as follows: the
egg is constrained to stay completely stationary, centered on
the spatula, with both bodies having width w. Furthermore,
as depicted in Fig. 6, we consolidate the frictional forces to a
single force applied along the flat egg/spatula interface. We can
do this because that contact surface is flat, and the frictional
force is applied parallel to it. Thus, the same frictional force
being applied on any point of that contact surface leads to the
same resultant moment.

Fig. 6: Free-body diagrams of the system using the simplified
value-iteration dynamical model, featuring the consolidated
frictional forces.

WIth this model, we are left with the 6-by-6 system of linear
equations that can be solved explicitly for ẍ. z̈, θ̈, N1, N2, and
f .

meẍ = (N1 +N2) sin θ + f cos θ

mez̈ = (N1 +N2) cos θ − f sin θ −meg (4)

Ieθ̈ = (N1 −N2)
w

2
− fd

msẍ = −(N1 +N2) sin θ − f cos θ + ux

msz̈ = −(N1 +N2) cos θ + f sin θ + uz −msg (5)

Isθ̈ = (N1 −N2)
w

2
− f

hs

2
+ uθ

There is, of course, an obvious oversight. If these system
dynamics were directly used by value iteration, the normal
forces and frictional force would be completely unconstrained,
acting, again, as if the egg was welded to the pan. The contact
constraints that we’ve left out are the crux of the problem;
thus, we must incorporate them into our cost function for value
iteration.

To do this, we add an exorbitantly high, and thus prohibitive
cost, if N1/2 < 0 or f2 > µ2(N1 + N2)

2. This works
because any state transition that would cause the egg to break
contact with the spatula would require a negative normal
force, and any state transition that would cause the egg to
slide off of the spatula would require a friction force that
violates the friction cone constraint. Thus, in calculating the
transition matrices, our system dynamics would be ”allowed”
to calculate the accelerations for the ”illegal” transitions.
However, when value iteration actually runs, the calculated
cost-to-go function would not rely on any ”illegal” transitions,
since the cost of them is so high. Thus, the resultant controller
will enforce the egg not slipping or breaking contact with the
spatula.

This cost is, of course, in addition to all of the ”normal”
costs: a cost on the difference between the egg angle and π, a
cost on the x-distance from the origin, and a quadratic cost on
actuation input. These base two costs drive the value iteration
to develop a controller that actually flips the egg.

IV. EVALUATION & DISCUSSION

A. Trajectory Optimization Results

To measure the success of the trajectory optimization, we
specify the following evaluation protocol:

1) Check if the optimization was successful. After run-
ning the trajectory optimization, the solver we’re using,
Snopt, outputs whether or not the optimization was suc-
cessful. Additionally, in the case of failure, constraints
that could not be satisfied can also be output.

2) Qualitatively evaluate the trajectory. If the optimiza-
tion was successful, that means that a trajectory that
satisfies all of the constraints was found. However, and
this is true even if the optimization fails, we can visual-
ize the trajectory and graph the positions, velocities, and



accelerations, as well as the calculated contact forces to
evaluate the feasibility of the optimization

3) Test the spatula trajectory with the contact solver in
Drake. Using a PID controller operating on the partial
state (the positions and velocity of the spatula), we can
control the spatula to follow the trajectory and check if
the egg behaves in simulation.

In running the optimization, the most prominent issue was
the optimization not completing. Removing, adding, and refor-
mulating constraints and costs did not make a large difference
in the success of the optimization. Instead, the initial guess
was the most important variable that affected the quality of
the optimization result. Many different initial guesses were
attempted, leading to a range of different solutions (none of
which, unfortunately, actually fully finished the optimization).
Here, we look at two characteristic guesses, and the solutions
the optimizer generated from them.

With this first guess, pictured on the left of Fig. 7, we
can see the sequence of positions that resulted from running
the optimization on the right of Fig. 7. The general motion
here is a fairly constant horizontal velocity superimposed
with a counterclockwise rotation that continues throughout
throughout the entire motion.

Fig. 7: (left) the first initial guess. (right) the result of the
optimization.

However, running the spatula trajectory through the PID
controller yields the output in Fig. 8. The egg leaves the spatula
as it approaches the apex of the trajectory. This behavior is
explained by the contact force graph in Fig. 9.

After 0.25 seconds, the normal forces drop off to zero;
however, we see small spikes in frictional forces. These are
the constraints that are violated to generate this solution. In
this case, they give the egg little impulses to keep it in contact

Fig. 8: The motion of the egg and the spatula with the
spatula portion of the trajectory, derived from the first guess,
commanded into the system with a PID controller.

Fig. 9: Plot of the contact forces over time in the optimizer-
output solution for the first guess.

with the spatula and to correct the angular velocity. As we can
see here, it doesn’t rotate enough by the time it hits the pan.

In Fig. 10, we see our second characteristic guess. This
yields a similar trajectory (Fig. 11) to the first guess, except it
has the feature of tipping the spatula slightly counterclockwise
before following through with the counterclockwise flip.

Fig. 10: The second initial guess.

Fig. 11: The trajectory that resulted from running the optimizer
on the second inital guess.

When run with the PID controller (as seen in Fig. 12), we
see that it still fails to track after the egg departs near the
apex, but egg ends up much closer in final angle to π when it
approaches the surface of the pan. As we can see in Fig. 13,
there aren’t nearly as many spikes in frictional force that are
not accompanied with normal forces; however, we now see
additional forces near the end that do not correspond to actual



contact in the PID-controlled trajectory. The forces are likely
the one that correct the angle before the egg ends up below
the pan.

Fig. 12: The motion of the egg and the spatula with the
spatula portion of the trajectory, derived from the second
guess, commanded into the system with a PID controller.

Fig. 13: Plot of the contact forces over time in the optimizer-
output solution for the second guess.

The overarching lesson here is the supreme importance
of the initial guess. The initial guesses were modelled as
cubic hermite splines, with the breakpoints’ positions and
velocities determined by intuition. However, changing this
drastically changes the success of the optimization. Ever so
slightly adjusting the breakpoints can take the optimization
from having a few instances in which the constraints are
broken to having the optimization’s output literally being
unchanged from the initial guess. And, yes, it is true that using
the PID controller does leave room for improvement. A Finite
Horizon LQR controller was attempted; unfortunately, Drake
does not support FHLQR for systems with contact dynamics.

Even so, the optimizer’s best results included a few time
steps in which the contact constraints were not appropriately
met, or the system dynamics were violated, in order to keep
the egg to a trajectory that succeeds. Upon visual inspection,
intuition can suggest a small tweak to the trajectory that would
make it succeed. However, the actually mathematics of the
contact dynamics are deeply nonconvex, with harsh cusps
present in many of the functions that we used for our costs. As
such, it is incredibly easy for the optimizer to get stuck in local
minima, in which the trajectory is very close to one that would

be successful. Going from a trajectory where the egg is able
to get to the goal state with sparse violations of the constraints
to one where there are no violations may require pushing
through numerical territory where there are many violations
or where the costs momentarily spike due to something like
incredibly high input magnitudes–this is something we can see
the optimizer unwilling to do.

B. Value Iteration Attempt

Unfortunately, the implementation of the value iteration
formulation was unsuccessful. The key issue encountered
here was the size of the problem space. Even reducing the
number of generalized coordinates to 3 still left us with a
6-dimensional state vector and a 3-dimensional input vector.
Using the range of positions, velocities, and inputs from the
trajectory optimization as a basis for the bounds of the space,
the number of knot points needed to get any semblance of
precision was simply massive. As such, even reducing the
number of knot points in each dimension to 7, which was the
minimum that seemed reasonable, the value iteration solver
was unable to compute even the transition and cost matrices,
let alone run value iteration on the result.

V. CONCLUSION

Overall, this work succeeded in formulating a trajectory
optimization problem, as well as a value iteration problem, that
could generate successful trajectories and controllers, respec-
tively, to flip an egg. However, the deep non-convexity of the
contact dynamics resulted in trajectory optimizations that were
largely incomplete and heavily sensitive to the initial guess,
and computational limitations prevented the development of an
optimal controller using value iteration. As far as developing
an optimal, nonlinear controller goes, a neural fitted approach
would help during the actual value iteration algorithm, because
it would greatly reduce the dimensionality of the search space.

As for the trajectory optimization, through tweaking the
initial guess, reasonable trajectories can be developed. And,
when the output trajectory, even if it violates the constraints,
is passed into a partial-state feedback PID controller, the egg’s
final position on the pan can be made approximately correct–
after all, the final position of the egg does not need to be
perfectly upside down for a qualitatively successful flip. From
this, we can conclude that our two-point contact abstraction
of the egg was sufficiently accurate. Furthermore, aside from
fine-tuning the initial guess, the next step for this would be
to implement full-state feedback. Currently, measurement and
feedback on the egg state is nonexistent; using a linearized
controller with full-state feedback, like a finite horizon LQR,
could help account for the loss of contact by ”pushing” the
spatula against the egg to re-establish normal force.

ACKNOWLEDGMENT

Thank you to Prof. Russ Tedrake, the course instructor of
6.832: Underactuated Robotics, for teaching the class, writing
the textbook, and being an invaluable resource on dynamics,
algorithms, and Drake throughout the course of the project, as



well as Teaching Assistants Lujie Yang and Alexndre Amice
for their help with this project.

REFERENCES

[1] C. Dawson, “Pancake flipping via trajectory optimization,” Underactu-
ated Robotics Final Project, May 2020.

[2] M. Posa, “Optimization for Control and Planning of Multi-contact
Dynamic Motion”, Ph.D Thesis, June 2017.


	Code
	Introduction and Related Work
	Approach
	System Dynamics with Implicit Contact
	Trajectory Optimization Formulation
	Additional Constraints
	Costs

	Value Iteration Formulation

	Evaluation & Discussion
	Trajectory Optimization Results
	Value Iteration Attempt

	Conclusion
	References

